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Abstract 

This paper derives analytical formulas for the systematic errors of the linear interpolated DFT (LIDFT) method 
when used to estimating multifrequency signal parameters and verifies this analysis using Monte-Carlo 
simulations. The analysis is performed on the version of the LIDFT method based on optimal approximation of 
the unit circle by a polygon using a pair of windows. The analytical formulas derived here take the systematic 
errors in the estimation of amplitude and frequency of component oscillations in the multifrequency signal as the 
sum of basic errors and the errors caused by each of the component oscillations. Additional formulas are also 
included to analyze particular quantities such as a signal consisting of two complex oscillations, and the analyses 
are verified using Monte-Carlo simulations. 
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1. Introduction 
 

Modern measurement techniques use sophisticated methods based on digital signal 
processing (DSP) that have become increasingly sophisticated to handle more complex 
mathematical problems [1-6]. An important class of complex problems is spectrum 
estimation, understood as the estimation of multifrequency signal parameters. The most 
accurate methods of this type of estimation are the Prony method and its modifications, the 
transmittance modeling methods and subspace methods (based mainly on the properties of the 
signal autocorrelation matrix and its eigenvalues) [1-4, 7-8]. The interpolated spectrum 
methods yield less accurate results but require a significantly shorter computation time. This 
class of methods includes nonparametric spectrum interpolation methods [9-16] and 
interpolated methods based on DFT [17-44]. A special class is non-iterative methods that take 
the leakage of the spectrum into account in their equations, including Multipoint Weighted 
Interpolated DFT (MWIDFT) methods [32, 34, 37] and the Linear Interpolated DFT (LIDFT) 
method [29-31, 41-42, 45-46]. The group of MWIDFT methods is only defined for the 
maximum sidelobe decay windows (class I Rife-Vincent windows) [17, 34, 37, 39]. The most 
advanced MWIDFT method appears to be the one based on complex spectrum values that 
approximate the spectrum leakage with a polynomial and a step 1 bin [39]. However, the 
MWIDFT methods have limitations, mainly with respect to frequency resolution and the level 
of oscillation amplitude versus the level of spectrum leakage. The LIDFT method can be used 
where former interpolation methods have failed by considering the spectrum leakage. The 
LIDFT method has evolved, and the latest version [42] is based on optimal approximation of 
the unit circle by a polygon [42, 45-46] and the use of a pair of windows [42]. The current 
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paper addresses the systematic errors of this latest version of the LIDFT method. 
2. Unit circle approximation and the pair of windows in the LIDFT method 

 
Let us assume that the aim of estimation is to determine the parameters Ak, ωk = 2πfk, and 

ϕk of the following multifrequency signal, defined in the domain of time t: 
 

 ∑
∈
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where the assumption k = k1, ..., kK (in which the condition ki+1 = ki+1 is not required) instead 
of k =1, ..., K allows for the integer index k to be linked with the appropriate integer index of 
the DFT spectrum sample. This assumption involves a simple renumbering of components 
that simplifies the description of the LIDFT method by coding additional information about 
the rough location of components in the DFT spectrum within the index k. 

Equation (1) can be written by: 
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Signal (2) is sampled with a frequency fs = 1/T (fs /2 > maxk{fk}, where fk=ωk/(2π)) results 

in N samples (indexed in general by n = n0, ..., n0 + N – 1 from the starting point n0) and has 
the form: 
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where λk = Nfk /fs is the normalized frequency in the DFT bin and Bk is the complex amplitude 
of the k-th complex oscillation Nnj

k
keB /π2 λ . The starting point n0 for the sample index n 

theoretically does not change the frequency and amplitude estimation results when the 
spectrum leakage is negligible but only changes the phase (which can be easy recalculated for 
different values of n0). Most often n0 = 0, but sometimes it is useful to assume that n0 = −N/2 
when N is even to make the time axis symmetrical, simplifying many equations and algorithm 
derivations. 

The LIDFT method presented in [42] makes two assumptions: 
1) Approximation of the unit circle by a polygon (with the parameter R ≥ 1 that allows the 

number of sides of the approximation polygon to be varied) [45, 50, 51], defined by: 
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where k ∈ S1 (here, the indexing used in (1) is very useful) and the parameter R is 
selected such that M is an integer (usually as a power of 2 when the radix-2 FFT 
algorithm is used in the final estimation method). αn and βn are defined with parameters 
η1 and η2, respectively: 
 

 111 cos)1()( ηηηα +−= nn x ,   ]tansin)1[(2)( 222 nnn xx ηηηβ +−⋅−= , (6) 
where: 
 12/,...,2/ −−= NNn ,   xn = πn/M (7) 
 

and optimal parameters values η1 and η2 that minimize maximum approximation errors 
should be found in the triangle on the plane (η1, η2) given by the following conditions 
[42, 45, 46]: 
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                                         1/4 ≤ η1 ≤ 1/2,   1/12 ≤ η2 ≤ 1/3,   η2 –η1 ≤ –1/6. (8) 
 

2) The pair of windows, the even window hn and the odd window gn, are obtained from the 
prototype window wn by: 

 nnn wh α2= ,   nnn wg β2= . (9) 
 

Simulations performed with wn as a triangular window [42, 45, 46] show that parameter 
values η1 ≈ 1/2 and η2 ≈ 1/6 are close to optimal for this window, but when other windows are 
used, these values should be verified as being close to optimal.   

After applying the above two assumptions (unit circle approximation and the pair of 
windows) in DFT formulas and denoting Ck = γkBk with γk = Rλk – k obtained from (5), the 
linear matrix equation is derived [42], which has the form Fx = f: 
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where S1 is the set of initial locations of components in the spectrum, i.e., (5) implies the 
condition for each integer k ∈ S1: 
 

 ]/)5.0(,/)5.0[( RkRkk +−∈λ . (11) 
 

The elements of the matrices in (10) are given by: 
 

 NRnnmm hr }{FFT α= ,   NRnnmm hβjs }{FFT−= ,   NRnnmm gjp }{FFT α= , (12) 
 

 NRnnmm gq }{FFT β= ,   NRnnmm hyu }{FFT= ,   NRnnmm gyjv }{FFT= , (13) 
 

 1,...,0 −= NRm , (14) 
 

where FFTm{zn}NR denotes the m-th element of the set of values obtained by the FFT 
algorithm applied to the set of N values zn supplemented with zeros to form the NR element 
set as follows: 
 NRNNNRn zzzzz }...,,,0...,,0,,...,{}{ 12/12/0 −−−= . (15) 
 

The solution of (10) allows for the direct determination of the amplitudes Bk and the 
normalized frequencies λk from: 
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where Reγk is introduced instead of γk because the result is usually not real but is complex due 
to the presence of noise in the signal, the finite accuracy of calculations and the possible non-
ideal initial location of the components of the spectrum. When this initial location is properly 
defined, then |Reγk | ≤ 1/2, and if it is not properly defined, several iterations can be performed 
[41]. The values Imγk, which should be close to 0, can also be used to verify that the initial 
locations of the components are correct. 
 
3. Systematic errors of the LIDFT method for the case of a multifrequency signal 

 
For the signal consisting of P complex oscillations (each with a complex amplitude Bk and 

a normalized frequency λk) and with condition (11), the signal samples yn are defined by (3), 
and applying (10) and (12)-(14) allows us to obtain the estimators kB̂  and kĈ  instead of the 
exact values Bk and Ck = Bkγk due to the systematic errors of the LIDFT method. (10), taking 
(3) into account, takes on the form: 
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in which Hi−k(−γk) and Gi−k(−γk) are defined by: 
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where m = i−k is the integer number, γ = −γk, functions H(λ) and G(λ) are defined for any real 
λ, are periodic with period N (e.g., H(λ+N) = H(λ)) and are shifted Discrete-time Fourier 
Transforms (DtFT) of N samples of windows hn and jgn: 
 

 ∑
−

−=

−=
12/

2/

/π2)(
N

Nn

Nnj
nehH λλ ,   ∑

−

−=

−=
12/

2/

/π2)(
N

Nn

Nnj
negjG λλ . (19) 

 

By introducing Mmk and Nmk according to: 
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based on (17) and (20): 
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For kB̂ , the maximum (for the worst-case phase arg Bi) of the systematic error δd |Bk | of 
|Bk | is derived from (21) (App. A): 
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are the components of total error (22). 
Analogously to (22)-(24), the maximum (for the worst-case phase arg Bi) of the systematic 

error Δd λk of λk is derived (App. B): 
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are the components of total error (25). 
To determine (22)-(27), Nmk and Mmk must be known from (20). The right side of this 

equation, taking (12)-(13) and (18)-(19) into account, has the form: 
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where I is an identity matrix, Λγ = [γk] is the diagonal matrix with elements γk (k ∈ S1), and 
using notation from (12)-(13) and m = i−k, the new symbols introduced in (28) are defined as: 
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Applying (28) to (20) yields the following result: 
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The result from (32), together with those from (22)-(27), form the basis for a more detailed 
analysis of the systematic errors of the LIDFT method for the case of two complex 
oscillations, presented in Section 4. 

 
4. The case of two complex oscillations 

 
Consider the case of two complex oscillations: Nnj

k
keB /π2 λ , Nnj

i
ieB /π2 λ , where λi > λk, 

λk = (k+γk)/R, λi = (i+γi)/R, |γi| ≤ 1/2, |γk| ≤ 1/2, the numbers i, k, τ = i−k are integer values and 
S1 = {k, i}. For this case, (22)-(27) have the form: 
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where abs(X) is the modulus of matrix X, i.e., for X=[xij], abs(X) = [|xij|]. 
From the assumptions hn = h−n, gn = −g−n, h−N/2 = 0 and from (32), Eqs. (C13) and (C14) are 

derived in App. C, implying that: 
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Taking into account (12)-(13), (29)-(31), and (C6)-(C10) from App. C, the properties 
hn = h−n, gn = −g−n, h−N/2 = 0 and αn = α−n, βn = −β−n and considering the range 
n = −N/2, …, N/2−1:  
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The relationships for u′ , v′ , w′ , x′ , y′ , and z′  are determined by (39)-(41) after 
substituting γi for γk.  

The upper bounds of the component errors of matrix D can be obtained by: 
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The derivation of (42) is presented in [42]; however, the version of the equation presented 
here differs in the fact that the maximization with respect to γk and γi is only with respect to 
the transformation of (34) to (42), i.e., to the last step of the derivation. This also allows for a 
second method of maximization with respect to γi and γk for a given τ +γI − γk, which is 
performed in (43). This type of maximization indicates the characteristics of the upper bounds 
of the component errors from matrix D as a function of the distance |λk–λi| between the 
components of the spectrum. These bounds, calculated from (43) for the triangular window wn 
in (9), with η1 = 1/2 and η2 = 1/6 in (6), are presented in Figs. 1 and 2 and are verified using 
Monte-Carlo simulations in Section 5. 
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Fig. 1. Upper bounds of the component errors of the total error δd |Bk | (22) 

in the estimation of |Bk | from (33)-(41) for a signal consisting of two complex oscillations,  
a triangular window wn in (9), η1=1/2 and η2=1/6: a) δdk |Bk |, b) δ'di |Bk |. 
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Fig. 2. Upper bounds of the component errors of the total error Δd λk  (25) 
in the estimation of λk from (33)-(41) for a signal consisting of two complex oscillations,  

a triangular window wn in (9), η1=1/2, and η2=1/6: a) Δdk λk, b) Δ'di λk. 
 
5. Verification of the LIDFT systematic error equations using Monte Carlo simulations 

 
The upper bounds of the error components from matrix D defined by (33) are determined 

by (43). These bounds are obtained with some simplifying assumptions presented in previous 
sections, therefore the quality of these approximations must be verified. This verification was 
performed using simulations in which the samples of a signal consisting of two complex 
oscillations were processed in the LIDFT algorithm for a given parameter R and the value of 
|Bi|/|Bk|. Each simulation was performed for λk, λi, arg Bk, and arg Bi values that were 
randomly generated from across their full ranges. For this signal, the LIDFT algorithm with a 
triangular prototype window wn with η1 = 1/2 and η2 = 1/6 was applied to obtain the estimates 
of λk and |Bk|, and the errors of these estimates were calculated. For each combination of the 
parameters R and |Bi|/|Bk|, 107 simulations were performed, and the maximum values of the 
calculated errors are plotted against the distance |λk −λi| between the components of the 
spectrum in comparison with the upper bounds determined from (33) and (43), as shown in 
Fig. 3.  
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Fig. 3. Comparison of the upper bounds of the total systematic errors from (33) and (43)  
of the LIDFT method (for the case of the triangular window wn in (9), η1=1/2, and η2=1/6) with Monte-Carlo 

simulation results (with 107 simulations for each curve) for R = 2, 4, 8 and |Bi|/|Bk| = 0.1, 10:  
a) the error of the amplitude estimation, δd |Bk |; b) the error of the frequency estimation, Δd λk . 



 
 J. Borkowski: SYSTEMATIC ERRORS OF THE LIDFT METHOD: ANALYTICAL FORM … 

 

The ranges of the plotted errors are limited to the values below 10% for δd |Bk | (i.e., −20 
dB) and below 0.1 bin for Δd λk (i.e., −20 dB with respect to 1 bin). Over these ranges, the 
results presented here converge well to the upper bounds of the errors obtained in Section 4 
and the maximum errors of the LIDFT method obtained in the simulations. 
 
6. Conclusions 
 

The main results of this paper are analytical formulas for the systematic errors of the 
LIDFT method and the verification of these formulas using Monte-Carlo simulations. The 
analysis presented here shows that for multifrequency signals consisting of many complex 
oscillations, the total systematic errors are the sum of the basic error components (δdk |Bk | for 
amplitude estimation and Δdk λk for frequency estimation) and the components of each 
oscillation (δdi |Bk | and Δdi λk, which are proportional to the ratio |Bi|/|Bk|), as described by 
(22)-(27). Supplementing these relations with (32) yields analytical formulas for some 
particular cases. One of the basic cases is a signal consisting of two complex oscillations, 
analyzed in Sect. 4. The main results of this section are relations (35)-(41) and (43), which 
together determine each error component for the case of two complex oscillations (basic 
components δdk |Bk |, Δdk λk and additional components δ'di |Bk |, Δ'di λk, which multiplied by 
the ratio |Bi|/|Bk| are the components δdi |Bk |, Δdi λk). The plots of these four components 
(δdk |Bk |, Δdk λk, δ'di |Bk |, Δ'di λk) in Figs. 1 and 2 show that increasing the parameter R 
decreases all of these error components and that the errors increase with small distances 
between components of the spectrum. The total estimation errors (δd |Bk | and Δd λk) for the 
case of two complex oscillations described by (33) are determined based on analytical 
solutions from Section 4 and verified using Monte-Carlo simulations with randomly generated 
frequencies and phases of complex oscillations (Fig. 3). Each curve was subjected to 107 
simulations, although far smaller numbers of simulations yielded similar results. These results 
demonstrate the accuracy of the analytical solutions presented in Section 4 over practical 
ranges of the errors from Figs. 1-3, i.e., below −20 dB. These results characterize the basic 
properties of the LIDFT method and its systematic errors, and they can be used to improve 
this method for the estimation of multifrequency signal parameters. 

 
Appendix A. Derivation of (22)-(24) 
 

From (21) and Mkk ≈ 1 (due to the case of small systematic errors of phase arg Bk and 
modulus |Bk|): 
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where δdk |Bk | and δdi |Bk | are defined by (23) and (24). 
 
Appendix B. Derivation of (25)-(27) 
 

To obtain high accuracy, i.e., δd |Bk | << 1, the condition |Mki|⋅|Bi|/|Bk| << 1 must be fulfilled. 
Using this condition, (16), (21) and an expansion to a Maclaurin series with respect to 
MkiBi/Bk: 



 
Metrol. Meas. Syst., Vol. XIX  (2012), No. 4, pp. 673-684. 

 

 

, )(11
||
||Re1

)(1ReRe1max

)(

)(
Re1max

Re1maxˆ
ˆ

Re1max|ˆ|max

,

,arg

,

,

arg

argargargd

1

11

1

1

1

1

1

111

∑

∑

∑

∑

∑
∑

≠∈

≠∈∈

≠∈

≠∈

∈

∈

∈

∈∈∈

−⋅+−=

−+−≅

−
+

+
=

−=−=−=Δ

kiSi
ki

kk

kk
ki

kkk

i
k

kk

kk

kiSi
ki

kk

kk
ki

kk
k

kk

kk

Si
B

k

kiSi k

i
kikk

kiSi k

i
ki

ki

ki
kk

Si
B

k
Si iki

Si iki

Si
Bk

k

k

Si
Bkk

Si
Bk

M
M
NN

MRB
B

M
N

R

M
M
NN

MM
N

R

B
BMM

B
BM

M
NN

R

BM

BN

RB
C

R

i

i

iii

γ

γ

γ

γγλλλ

 (B1) 

 

yielding (25) with: 
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For small systematic errors δdk |Bk | << 1, i.e., | Mkk −1 | << 1; thus, the following 
approximation can be made: 
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which, when used in (B2)-(B3), using (23)-(24) and under the conditions: 
 

 1||δd <<kk B ,   1||δd <<′ ki B ,   1d <<Δ kk λ ,   1d <<Δ′ kiλ , (B5) 
yields (26)-(27): 
 

 |)1()(||)1)((| 11
d −−−≅−+−−−≅Δ −−

kkkkkkkkkkkkkkkkk MNRMNNR γγγγγλ , (B6) 
 

 ||
)]1(1[

)()1( 1
2

1
d kikki

kk

kikkkkikkikkki
ki MNR

M
MNMNMNR γγγλ −≅

−+
−−−+−

=Δ′ −− . (B7) 

 

 
Appendix C. Derivation of (35) 
 

For the signal consisting of two complex oscillations Nnj
k

keB /π2 λ  and Nnj
i

ieB /π2 λ  defined in 
the first paragraph of Section 4, (32) has the form: 
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The property of an even hn, taking into account (6) and (9), means that gn is odd. From this 
assumption and based on (19), function H(λ) is even with respect to λ, and function G(λ) is 
odd, and taking into account (18): 
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 )()( γγ ττ HH =−− ,      )()( γγ ττ GG −=−− . (C2) 
 

Condition h−N/2=0 yields the condition g−N/2=0. From this and from the even and odd 
properties of hn and gn, respectively, it follows that the coefficients rm, sm, pm, and qm from 
(12)-(13) are real and fulfill the following: 

 

 ττ rr =− , ττ ss −=− , ττ pp −=− , ττ qq =− , 000 == ps . (C3) 
 

Analogous conditions are also fulfilled for (29)-(30): 
 

 ττ rr Δ=Δ − , ττ ss Δ−=Δ − , ττ pp Δ−=Δ − , ττ qq Δ=Δ − , 000 =Δ=Δ ps . (C4) 
 

Equation (C1), taking into account (C3)-(C4), has the form: 
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To shorten the notations of the next transformations, the 18 symbols (a, b, …) are 
introduced as follows: 

 

 τrra −= 0 , τsb −= , τpc = , τqqd += 0 , τrre += 0 , τqqf −= 0 , (C6) 
 

 )( kk su γγ τΔ= , )()(0 kk rrv γγ τΔ−Δ= , )()(0 kk rrw γγ τΔ+Δ= , (C7) 
 

 )( ii su γγ τΔ=′ , )()(0 ii rrv γγ τΔ−Δ=′ , )()(0 ii rrw γγ τΔ+Δ=′ , (C8) 
 

 )( kpx γτΔ= , ))()(( 0 kkk qqy γγγ τΔ−Δ= , ))()(( 0 kkk qqz γγγ τΔ+Δ= , (C9) 
 

 )( ipx γτΔ=′ , ))()(( 0 iii qqy γγγ τΔ−Δ=′ , ))()(( 0 iii qqz γγγ τΔ+Δ=′ . (C10) 
 

After transformation (C5), by summing the appropriate columns and rows and taking into 
account (C6)-(C10): 
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Omitting elements equal to zero in (C12), two equations are obtained instead of (C5): 
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and multiplying the left sides of these equations by the inverses of the appropriate matrices 
and summing by sides yields (35) and (36). 
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